Types of Radioactive Decay

type	example	notes
alpha (α) decay	$^{238}_{92}U \rightarrow ^{4}_{2}He + ^{234}_{90}Th + 2 ^{0}_{0}\gamma$	• $\alpha \text{ particle} = {}_{2}^{4}\text{He nucleus (i.e., }_{2}^{4}\text{He}^{2+})$
beta (β⁻) decay	$^{234}_{90}$ Th $\rightarrow ^{0}_{-1}e + ^{234}_{91}$ Pa	 β⁻ particle = ⁰₋₁e (an electron) energy released in decay process <i>creates</i> the β⁻ particle (not from an orbital) net effect: convert neutron to proton β⁻ particles likely to be produced by nuclides with <i>high</i> neutron-to-proton ratios
positron (β⁺) decay	$^{38}_{19}$ K $\rightarrow ^{0}_{1}e + ^{38}_{18}$ Ar	 β⁺ particle = ⁰₁e (a positive electron) β⁺ is "antiparticle" of β⁻ net effect: convert proton to neutron β⁺ particles likely to be produced by nuclides with <i>low</i> neutron-to-proton ratios
electron capture	$^{195}_{80}\text{Hg} + ^{0}_{-1}e \rightarrow ^{195}_{79}\text{Au}$	 an inner-orbital electron captured by nucleus generally slow net effect: convert proton to neutron likely for nuclides with <i>low</i> neutron-to-proton ratios
gamma (γ) decay	${}^{60}_{27}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + {}^{0}_{-1}e + 2 {}^{0}_{0}\gamma$	 ⁰₀γ = high energy photon frequently accompanies other decay types a way of "draining off" excess energy (product nuclide may be in excited state)
spontaneous fission	$^{252}_{98}Cf \rightarrow ^{140}_{54}Xe + ^{108}_{44}Ru + 4^{1}_{0}n$	 generally slow "splitting" of heavy nuclide to lighter ones with similar mass numbers