Lewis Dot Practice

Use electronegativity to predict the type of bond that will occur between the following elements and use Lewis Dot structures (including charges) to show how they will bond together. Write the resulting formula below your diagram.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Elements</th>
<th>Lewis Dot Structures</th>
<th>ΔEN</th>
<th>Element w/ greater pull on e-</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Potassium and Fluorine</td>
<td></td>
<td>4.0 - 0.8 = 3.2</td>
<td>F</td>
<td>KF</td>
</tr>
<tr>
<td>2)</td>
<td>Calcium and Bromine</td>
<td></td>
<td>2.8 - 1.0 = 1.8</td>
<td>Br</td>
<td>CaBr_2</td>
</tr>
<tr>
<td>3)</td>
<td>Gallium and Oxygen</td>
<td></td>
<td>3.5 - 1.6 = 1.9</td>
<td>O</td>
<td>Ga_2O_3</td>
</tr>
<tr>
<td>4)</td>
<td>Iodine and Lithium</td>
<td></td>
<td>3.5 - 1.0 = 2.5</td>
<td>I</td>
<td>LiI</td>
</tr>
<tr>
<td>5)</td>
<td>Oxygen and Barium</td>
<td></td>
<td>3.5 - 0.9 = 2.6</td>
<td>O</td>
<td>BaO</td>
</tr>
<tr>
<td>6)</td>
<td>Magnesium and Nitrogen</td>
<td></td>
<td>3.0 - 1.2 = 1.8</td>
<td>N</td>
<td>Mg_3N_2</td>
</tr>
</tbody>
</table>

7) Other than calculating ΔEN, what is another way you can predict the type of bond that will occur between 2 atoms?

* Ionic = Metal + Non-Metal
* Covalent = Non-Metal + Non-Metal
Use your knowledge of ionic charges to predict the formulas for compounds made from the following ions/polyatomic ions.

Predict Charges → Criss-Cross Charges → Write Formula

1) Calcium and Phosphorous

$$\text{Ca}^{2+} \quad \text{P}^{3-}$$

$$\text{Ca}_3\text{P}_2$$

2) Magnesium and Nitrogen

$$\text{Mg}^{2+} \quad \text{N}^{3-}$$

$$\text{Mg}_3\text{N}_2$$

3) Oxygen and Sodium

$$\text{Na}^{+} \quad \text{O}^{2-}$$

$$\text{Na}_2\text{O}$$

4) Ammonium and Sulfur

$$\text{NH}_4^+ \quad S^{2-}$$

$$(\text{NH}_4)_2\text{S}$$

5) Aluminum and Hydroxide

$$\text{Al}^{3+} \quad \text{OH}^-$$

$$\text{Al} (\text{OH})_3$$

6) Iron (II) and Sulfate

$$\text{Fe}^{2+} \quad \text{SO}_4^{2-}$$

$$\text{FeSO}_4 \quad \text{(reduce)}$$

7) Copper (I) and Phosphate

$$\text{Cu}^{+} \quad \text{PO}_4^{3-}$$

$$\text{Cu}_3\text{PO}_4$$

8) Vanadium (III) and Acetate

$$\text{V}^{3+} \quad \text{C}_2\text{H}_3\text{O}_2^-$$

$$\text{V} (\text{C}_2\text{H}_3\text{O}_2)_3$$