pH Practice Problems

Name Ley

Use the pH equations covered in your notes to complete the following problems.

- 1) A 250.0mL solution of hydrochloric acid is prepared from 8.37g of solute.
 - a. What is the $[H_3O^{\dagger}]$ of the solution?

250.0 ml
$$\left(\frac{1L}{1000 \text{ mL}}\right) = 0.2500 \text{ L}$$

8.37 $G\left(\frac{1 \text{ mol}}{36.46 \text{ G}}\right) = 0.230 \text{ Mol Hcl}$
0.230 mol Hcl = 0.918 M Hcl $\left(\frac{1 \text{ mol H}^{+}}{1 \text{ mol Hcl}}\right) = 0.918 \text{ M H}^{+}$

b. What is the pH of the solution?

c. What is the pOHof the solution?

d. What is the [OH⁻] of the solution?

$$[OH^{-}] = 10^{-13.96}$$

= $[1.09 \times 10^{-14}]$

$$[0H^{-}] = \frac{1.4 \times 10^{-14}}{0.418}$$

$$= [1.09 \times 10^{-14} M]$$

- 2) A 550.0mL solution of sulfuric acid has a pH of 1.10.
 - a. What is the pOH of the solution?

$$poH = 14 - 1.10$$

= 12.9

b. What is the [OH-] of the solution?

c. What is the $[H_3O^{\dagger}]$ of the solution?

$$[H_30^+] = 10^{-1.10} = 0.0794 \text{ M}$$

06

$$[H_30^+] = \frac{1.0 \times 10^{-14} M}{1.26 \times 10^{-13} M} = 0.6794 M$$

d. How many grams of sulfuric acid were used to make the solution?

- 3) A 55mL solution of potassium hydroxide is made from 5.7g of solute.
 - a. What is the [OH⁻]?

0.055 L

5.75
$$\left(\frac{1 \text{ mol}}{56.115}\right) = 0.10 \text{ mol KoH}$$

0.10 mol KoH

0.065 L = 1.8 M KOH $\left(\frac{1 \text{ mol OH}^{-1}}{1 \text{ mol KOH}}\right) = 1.8 \text{ M OH}^{-1}$

b. What is the pOH of the solution?

$$pOH = -log(1.8)$$

= $[-0.27]$

c. What is the pH of the solution?

$$\rho H = 14 - (-0.27)$$

$$= 14.27$$

d. What is the [H₃O⁺]?

$$[H_30^+] = 10^{-14.27}$$

= $[5.6 \times 10^{-15} \text{ M}]$

$$(430+) = \frac{1 \times 10^{-14}}{1.8}$$
$$= [5.6 \times 10^{-15} M]$$

- 4) A 2500.0mL solution of calcium hydroxide has a pH of 13.2
 - a. What is the pOH of the solution?

b. What is the [OH] of the solution?

$$[0H^{-}] = 10^{-0.8}$$

c. What is the $[H_3O^{\dagger}]$ of the solution?

$$[H_30^+] = 10^{-13.2} = [6.33 \times 10^{-14} M]$$

$$[H_30^+] = \frac{1 \times 10^{-14}}{0.158} = [6.33 \times 10^{-14}]$$

d. How many grams of calcium hydroxide were used to make the solution?